Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Native Australian species are effective in extracting multiple heavy metals from biosolids.

Identifieur interne : 001269 ( Main/Exploration ); précédent : 001268; suivant : 001270

Native Australian species are effective in extracting multiple heavy metals from biosolids.

Auteurs : Hoi-Fei Mok [Australie] ; Ramaprasad Majumder ; W Scott Laidlaw ; David Gregory ; Alan J M. Baker ; Stefan K. Arndt

Source :

RBID : pubmed:23819263

Descripteurs français

English descriptors

Abstract

Selecting native plant species with characteristics suitable for extraction of heavy metals may have multiple advantages over non-native plants. Six Australian perennial woody plant species and one willow were grown in a pot trial in heavy metal-contaminated biosolids and a potting mix. The plants were harvested after fourteen months and above-ground parts were analysed for heavy metal concentrations and total metal contents. All native species were capable of growing in biosolids and extracted heavy metals to varying degrees. No single species was able to accumulate heavy metals at particularly high levels and metal extraction depended upon the bioavailability of the metal in the substrate. Metal extraction efficiency was driven by biomass accumulation, with the species extracting the most metals also having the greatest biomass yield. The study demonstrated that Grevillea robusta, Acacia mearnsii, Eucalyptus polybractea, and E. cladocalyx have the greatest potential as phytoextractor species in the remediation of heavy metal-contaminated biosolids. Species survival and growth were the main determinants of metal extraction efficiency and these traits will be important for future screening of native species.

DOI: 10.1080/15226514.2012.723063
PubMed: 23819263


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Native Australian species are effective in extracting multiple heavy metals from biosolids.</title>
<author>
<name sortKey="Mok, Hoi Fei" sort="Mok, Hoi Fei" uniqKey="Mok H" first="Hoi-Fei" last="Mok">Hoi-Fei Mok</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Ecosystem Science, The University of Melbourne, Richmond, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Forest and Ecosystem Science, The University of Melbourne, Richmond, Victoria</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Majumder, Ramaprasad" sort="Majumder, Ramaprasad" uniqKey="Majumder R" first="Ramaprasad" last="Majumder">Ramaprasad Majumder</name>
</author>
<author>
<name sortKey="Laidlaw, W Scott" sort="Laidlaw, W Scott" uniqKey="Laidlaw W" first="W Scott" last="Laidlaw">W Scott Laidlaw</name>
</author>
<author>
<name sortKey="Gregory, David" sort="Gregory, David" uniqKey="Gregory D" first="David" last="Gregory">David Gregory</name>
</author>
<author>
<name sortKey="Baker, Alan J M" sort="Baker, Alan J M" uniqKey="Baker A" first="Alan J M" last="Baker">Alan J M. Baker</name>
</author>
<author>
<name sortKey="Arndt, Stefan K" sort="Arndt, Stefan K" uniqKey="Arndt S" first="Stefan K" last="Arndt">Stefan K. Arndt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23819263</idno>
<idno type="pmid">23819263</idno>
<idno type="doi">10.1080/15226514.2012.723063</idno>
<idno type="wicri:Area/Main/Corpus">001248</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001248</idno>
<idno type="wicri:Area/Main/Curation">001248</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001248</idno>
<idno type="wicri:Area/Main/Exploration">001248</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Native Australian species are effective in extracting multiple heavy metals from biosolids.</title>
<author>
<name sortKey="Mok, Hoi Fei" sort="Mok, Hoi Fei" uniqKey="Mok H" first="Hoi-Fei" last="Mok">Hoi-Fei Mok</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Ecosystem Science, The University of Melbourne, Richmond, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Forest and Ecosystem Science, The University of Melbourne, Richmond, Victoria</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Majumder, Ramaprasad" sort="Majumder, Ramaprasad" uniqKey="Majumder R" first="Ramaprasad" last="Majumder">Ramaprasad Majumder</name>
</author>
<author>
<name sortKey="Laidlaw, W Scott" sort="Laidlaw, W Scott" uniqKey="Laidlaw W" first="W Scott" last="Laidlaw">W Scott Laidlaw</name>
</author>
<author>
<name sortKey="Gregory, David" sort="Gregory, David" uniqKey="Gregory D" first="David" last="Gregory">David Gregory</name>
</author>
<author>
<name sortKey="Baker, Alan J M" sort="Baker, Alan J M" uniqKey="Baker A" first="Alan J M" last="Baker">Alan J M. Baker</name>
</author>
<author>
<name sortKey="Arndt, Stefan K" sort="Arndt, Stefan K" uniqKey="Arndt S" first="Stefan K" last="Arndt">Stefan K. Arndt</name>
</author>
</analytic>
<series>
<title level="j">International journal of phytoremediation</title>
<idno type="ISSN">1522-6514</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acacia (growth & development)</term>
<term>Acacia (metabolism)</term>
<term>Acacia (physiology)</term>
<term>Australia (MeSH)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Eucalyptus (growth & development)</term>
<term>Eucalyptus (metabolism)</term>
<term>Eucalyptus (physiology)</term>
<term>Magnoliopsida (growth & development)</term>
<term>Magnoliopsida (metabolism)</term>
<term>Magnoliopsida (physiology)</term>
<term>Metals, Heavy (analysis)</term>
<term>Metals, Heavy (metabolism)</term>
<term>Plant Components, Aerial (growth & development)</term>
<term>Plant Components, Aerial (metabolism)</term>
<term>Proteaceae (growth & development)</term>
<term>Proteaceae (metabolism)</term>
<term>Proteaceae (physiology)</term>
<term>Soil Pollutants (analysis)</term>
<term>Soil Pollutants (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acacia (croissance et développement)</term>
<term>Acacia (métabolisme)</term>
<term>Acacia (physiologie)</term>
<term>Australie (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Eucalyptus (croissance et développement)</term>
<term>Eucalyptus (métabolisme)</term>
<term>Eucalyptus (physiologie)</term>
<term>Magnoliopsida (croissance et développement)</term>
<term>Magnoliopsida (métabolisme)</term>
<term>Magnoliopsida (physiologie)</term>
<term>Métaux lourds (analyse)</term>
<term>Métaux lourds (métabolisme)</term>
<term>Parties aériennes de plante (croissance et développement)</term>
<term>Parties aériennes de plante (métabolisme)</term>
<term>Polluants du sol (analyse)</term>
<term>Polluants du sol (métabolisme)</term>
<term>Proteaceae (croissance et développement)</term>
<term>Proteaceae (métabolisme)</term>
<term>Proteaceae (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Metals, Heavy</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Métaux lourds</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Acacia</term>
<term>Eucalyptus</term>
<term>Magnoliopsida</term>
<term>Parties aériennes de plante</term>
<term>Proteaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Acacia</term>
<term>Eucalyptus</term>
<term>Magnoliopsida</term>
<term>Plant Components, Aerial</term>
<term>Proteaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Acacia</term>
<term>Eucalyptus</term>
<term>Magnoliopsida</term>
<term>Metals, Heavy</term>
<term>Plant Components, Aerial</term>
<term>Proteaceae</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acacia</term>
<term>Eucalyptus</term>
<term>Magnoliopsida</term>
<term>Métaux lourds</term>
<term>Parties aériennes de plante</term>
<term>Polluants du sol</term>
<term>Proteaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Acacia</term>
<term>Eucalyptus</term>
<term>Magnoliopsida</term>
<term>Proteaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Acacia</term>
<term>Eucalyptus</term>
<term>Magnoliopsida</term>
<term>Proteaceae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Australia</term>
<term>Biodegradation, Environmental</term>
<term>Biomass</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Australie</term>
<term>Biomasse</term>
<term>Dépollution biologique de l'environnement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Selecting native plant species with characteristics suitable for extraction of heavy metals may have multiple advantages over non-native plants. Six Australian perennial woody plant species and one willow were grown in a pot trial in heavy metal-contaminated biosolids and a potting mix. The plants were harvested after fourteen months and above-ground parts were analysed for heavy metal concentrations and total metal contents. All native species were capable of growing in biosolids and extracted heavy metals to varying degrees. No single species was able to accumulate heavy metals at particularly high levels and metal extraction depended upon the bioavailability of the metal in the substrate. Metal extraction efficiency was driven by biomass accumulation, with the species extracting the most metals also having the greatest biomass yield. The study demonstrated that Grevillea robusta, Acacia mearnsii, Eucalyptus polybractea, and E. cladocalyx have the greatest potential as phytoextractor species in the remediation of heavy metal-contaminated biosolids. Species survival and growth were the main determinants of metal extraction efficiency and these traits will be important for future screening of native species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23819263</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1522-6514</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>15</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>International journal of phytoremediation</Title>
<ISOAbbreviation>Int J Phytoremediation</ISOAbbreviation>
</Journal>
<ArticleTitle>Native Australian species are effective in extracting multiple heavy metals from biosolids.</ArticleTitle>
<Pagination>
<MedlinePgn>615-32</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Selecting native plant species with characteristics suitable for extraction of heavy metals may have multiple advantages over non-native plants. Six Australian perennial woody plant species and one willow were grown in a pot trial in heavy metal-contaminated biosolids and a potting mix. The plants were harvested after fourteen months and above-ground parts were analysed for heavy metal concentrations and total metal contents. All native species were capable of growing in biosolids and extracted heavy metals to varying degrees. No single species was able to accumulate heavy metals at particularly high levels and metal extraction depended upon the bioavailability of the metal in the substrate. Metal extraction efficiency was driven by biomass accumulation, with the species extracting the most metals also having the greatest biomass yield. The study demonstrated that Grevillea robusta, Acacia mearnsii, Eucalyptus polybractea, and E. cladocalyx have the greatest potential as phytoextractor species in the remediation of heavy metal-contaminated biosolids. Species survival and growth were the main determinants of metal extraction efficiency and these traits will be important for future screening of native species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mok</LastName>
<ForeName>Hoi-Fei</ForeName>
<Initials>HF</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest and Ecosystem Science, The University of Melbourne, Richmond, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Majumder</LastName>
<ForeName>Ramaprasad</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laidlaw</LastName>
<ForeName>W Scott</ForeName>
<Initials>WS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gregory</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Alan J M</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Arndt</LastName>
<ForeName>Stefan K</ForeName>
<Initials>SK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Int J Phytoremediation</MedlineTA>
<NlmUniqueID>101136878</NlmUniqueID>
<ISSNLinking>1522-6514</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000045" MajorTopicYN="N">Acacia</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001315" MajorTopicYN="N">Australia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005052" MajorTopicYN="N">Eucalyptus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Magnoliopsida</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035261" MajorTopicYN="N">Plant Components, Aerial</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039105" MajorTopicYN="N">Proteaceae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23819263</ArticleId>
<ArticleId IdType="doi">10.1080/15226514.2012.723063</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
<region>
<li>Victoria (État)</li>
</region>
<settlement>
<li>Melbourne</li>
</settlement>
<orgName>
<li>Université de Melbourne</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Arndt, Stefan K" sort="Arndt, Stefan K" uniqKey="Arndt S" first="Stefan K" last="Arndt">Stefan K. Arndt</name>
<name sortKey="Baker, Alan J M" sort="Baker, Alan J M" uniqKey="Baker A" first="Alan J M" last="Baker">Alan J M. Baker</name>
<name sortKey="Gregory, David" sort="Gregory, David" uniqKey="Gregory D" first="David" last="Gregory">David Gregory</name>
<name sortKey="Laidlaw, W Scott" sort="Laidlaw, W Scott" uniqKey="Laidlaw W" first="W Scott" last="Laidlaw">W Scott Laidlaw</name>
<name sortKey="Majumder, Ramaprasad" sort="Majumder, Ramaprasad" uniqKey="Majumder R" first="Ramaprasad" last="Majumder">Ramaprasad Majumder</name>
</noCountry>
<country name="Australie">
<region name="Victoria (État)">
<name sortKey="Mok, Hoi Fei" sort="Mok, Hoi Fei" uniqKey="Mok H" first="Hoi-Fei" last="Mok">Hoi-Fei Mok</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001269 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001269 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23819263
   |texte=   Native Australian species are effective in extracting multiple heavy metals from biosolids.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23819263" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020